Vol. 85
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-09-29
EM Full-Wave Analysis and Testing of Novel Quasi-Elliptic Microstrip Filters for Ultra Narrowband Filter Design
By
Progress In Electromagnetics Research, Vol. 85, 261-288, 2008
Abstract
A new class of microstrip filter structures are designed, optimized, simulated and measured for ultra-narrowband performance essential to the wireless industry applications. More accurate model of the coupling coefficient is outlined and tested for narrowband filter design. Two sample filters are fabricated and measured to verify the simulations and prove the concept. The idea behind the new designs is based on minimizing the parasitic couplings within the resonators and the inter-resonator coupling of adjacent resonators. A reduction of the overall coupling coefficient is achieved even with less resonator separation which is a major issue for compactness of such filters. The best new designs showed a simulated fractional bandwidth (FBW) of 0.05% and 0.02% with separations of S = 0.63 mm and S = 0.45 mm, respectively. The measured filters tend to have even narrower FBW than the simulated, though its insertion loss deteriorates, possibly due to mismatch at the interface with external circuitry and poor shielding effect of the test platform. The investigated 2-pole filters are accommodated on a compact area of a nearly 0.6 cm2. An improvement of tens of times of order in narrowband performance is achieved compared to reported similar configuration filters and materials. A sharp selectivity and quasi-elliptic response are also demonstrated with good agreement in both simulations and measurements. In all filters, however, the study shows that the narrower the FBW, the larger the insertion loss (IL) and the worse the return loss (RL). This is confirmed by measurements.
Citation
Zuhair Hejazi, Maximilian C. Scardelletti, Frederick W. Van Keuls, Amjad Omar, and Ayman Sulaiman Al-Zayed, "EM Full-Wave Analysis and Testing of Novel Quasi-Elliptic Microstrip Filters for Ultra Narrowband Filter Design," Progress In Electromagnetics Research, Vol. 85, 261-288, 2008.
doi:10.2528/PIER08082605
References

1. Mtthaei, G. L., N. O. Fenzi, R. J. Forse, and S. M. Rohlfing, "Hairpin-comp filter for HTS and other narrow-band applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 8, 1226-1231, 1997.
doi:10.1109/22.618411

2. Hong, J.-S. and M. J. Lancaster, "Cross-coupled microstrip hairpin-resonator filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 1, 118-122, 1998.
doi:10.1109/22.654931

3. Yu, C.-C. and Y. K. Chang, "Novel compact elliptic-function narrow-band bandpass filters using microstrip open-loop resonators with coupled and crossing lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 7, 952-958, 1998.
doi:10.1109/22.701448

4. Hong, J.-S. and M. J. Lancaster, "Aperture-coupled microstrip open-loop resonators and their applications to the design of novel microstrip bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 9, 1848-1855, 1999.
doi:10.1109/22.788522

5. Hong, J.-S., M. J. Lancaster, D. Jedamzik, and R. B. Greed, "On the development of superconducting microstrip filters for mobile communications applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 9, 1656-1663, 1999.
doi:10.1109/22.788606

6. Kim, H. T., B.-C. Min, Y.-H. Choi, S.-H. Moon, S.-M. Lee, B. Oh, J.-T. Lee, I. Park, and C.-C. Shin, "A compact narrowband HTS microstrip filter for PCS applications," IEEE Transactions on Applied Superconductivity, Vol. 9, No. 2, 3909-3912, 1999.
doi:10.1109/77.783882

7. Hejazi, Z. M., P. S. Excell, and Z. Jiang, "Compact dual-mode filters for HTS satellite communication systems," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 8, 275, 1998.
doi:10.1109/75.704412

8. Hejazi, Z. M., Z. Jiang, and P. S. Excell, "Lumped-element microstrip narrow bandpass tunable filter using varactor-loaded inductors," International Journal of Electronics, Vol. 90, No. 1, 57-63, 2003.
doi:10.1080/0020721031000147327

9. Jeon, B. K., J. H. Kim, C. J. Lee, B. C. Min, Y. H. Choi, S. K. Kim, and B. Oh, "A novel HTS microstrip quasi-elliptic function bandpass filter using pseudo-lumped element resonator," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 1197-1200, 2000.

10. Reppel, M., Novel HTS microstrip resonator configurations for microwave bandpass filters, Doctoral dissertation, Bergish University, Wuppertal, Germany, 2000.

11. Vendik, I. B., A. N. Deleniv, V. O. Sherman, A. A. Svishchev, V. V. Kondratiev, D. V. Kholodniak, A. V. Lapshin, P. N. Yudin, B.-C. Min, Y. H. Choi, and B. Oh, "Narrowband Y-Ba-Cu-O filter with quasi-elliptic characteristic," IEEE Transactions on Applied Superconductivity, Vol. 11, No. 1, 477-480, 2001.
doi:10.1109/77.919386

12. Matthaei, G. L., "Narrow-band, fixed-tuned, and tunable bandpass filters with zig-zag hairpin-comb resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1214-1219, 2003.
doi:10.1109/TMTT.2003.809631

13. Sheng, Y. and S. Carles, "New advances in HTS microstrip filter design," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1885-1888, 2003.

14. Yi, H. R., S. K. Remillard, and A. Abdelmonem, "A superconducting thin film filter of very high wide-band rejection," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1893-1896, 2003.

15. Dustakar, K. and S. Berkowitz, "An ultra-narrowband HTS band-pass filter," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1881-1884, 2003.

16. Zhou, J., M. J. Lancaster, and F. Huang, "Superconducting microstrip filter using compact resonators with double-spiral inductors and interdigital capacitors," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1889-1892, 2003.

17. Hasan, A. and A. E. Nadeem, "Novel microstrip hairpinline narrowband bandpass filter using via ground holes," Progress In Electromagnetics Research, Vol. 78, 393-419, 2008.
doi:10.2528/PIER07091401

18. Xiao, J.-K., S.-P. Li, and Y. Li, "Novel planar bandpass filters using single patch resonators with corner cuts," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1481-1493, 2006.
doi:10.1163/156939306779274327

19. Zhu, Y.-Z., Y.-J. Xie, and H. Feng, "Novel microstrip bandpass filters with transmission zeros," Progress In Electromagnetics Research, Vol. 77, 29-41, 2007.
doi:10.2528/PIER07072301

20. Xiao, J.-K. and Y. Li, "Novel microstrip square ring bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1817-1826, 2006.
doi:10.1163/156939306779292156

21. Zhao, L.-P., X.-W. Chen, and C.-H. Liang, "Novel design of dual-mode dual-band bandpass filter with triangular resonators," Progress In Electromagnetics Research, Vol. 77, 417-424, 2007.
doi:10.2528/PIER07090501

22. Xiao, J.-K., S.-W. Ma, S. Zhang, and Y. Li, "Novel compact split ring stepped impedance resonators (SIR) bandpass filters with transmission zeros," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 329-339, 2007.
doi:10.1163/156939307779367369

23. Wang, Y. X., B.-Z. Wang, and J. Wang, "A compact square loop dual-mode bandpass filter with wide stop-band," Progress In Electromagnetics Research, Vol. 77, 67-73, 2007.
doi:10.2528/PIER07072707

24. Xiao, J.-K., "Novel microstrip dual-mode bandpass filter using isosceles triangular patch resonator with fractal-shaped structure," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1341-1351, 2007.
doi:10.1163/156939307783239500

25. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

26. Wang, X.-H., B.-Z. Wang, and K. J. Chen, "Compact broadband dual-band bandpass filters using slotted ground structures," Progress In Electromagnetics Research, Vol. 82, 151-166, 2008.
doi:10.2528/PIER08030101

27. Naghshvarian-Jahromi, M. and M. Tayarani, "Miniature planar UWB bandpass filters with circular slots in ground," Progress In Electromagnetics Research Letters, Vol. 3, 87-93, 2008.

28. Hejazi, Z. M. and A. Omar, "Modeling and simulation of novel ultra-narrowband miniature microstrip filters for mobile and wireless critical applications," Microwave & Optical Technology Letters, Vol. 45, No. 1, 35-39, 2005.
doi:10.1002/mop.20715

29. Hejazi, Z. M. and Z. Jiang, "A new model to calculate the coupling coefficient for more accurate filter design and further development of narrowband-filter performance," Microwave & Optical Technology Letters, Vol. 47, No. 2, 180-185, 2005.
doi:10.1002/mop.21118

30. Sonnet User’s manuals for em and related software, release 9, Sonnet Software, Inc., North Syracuse, NY, USA, 2003.

31. Grounds, P. W. and K. A. Zaki, "Analysis of the coupling between degenerate modes of enclosed rectangular microstrip patches," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 11-12, 1503-1516, 1995.
doi:10.1163/156939395X00181

32. Jiang, Z., Z. M. Hejazi, P. S. Excell, and W. Y. Xu, "A new HTS microwave filter using dual-mode multi-zigzag microstrip loop resonators," IEEE Asia Pacific Microwave Conference, Vol. 3, 813, November 30-December 3 1999.

33. Hejazi, Z. M. Superconducting planar resonators and filters, Doctoral dissertation, University of Bradford, Bradford, UK, 1998.

34. Agilant Rf and microwave appCAD software, www.hp.woodshot.com/appcad/appcad.htm, 2004.

35. Rautio, J. C. and V. Demir, "Microstrip conductor loss models for electromagnetic analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 915-921, 2003.
doi:10.1109/TMTT.2003.808693

36. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures, Artech House, Norwood, MA, 1980.