Vol. 82
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-03-30
Efficient Electrically Small Prolate Spheroidal Antennas Coated with a Shell of Double-Negative Metamaterials
By
Progress In Electromagnetics Research, Vol. 82, 241-255, 2008
Abstract
An efficient, electrically small prolate spheroidal antenna coated with confocal double-negative (DNG) metamaterials (MTMs) shell is presented. The radiation power of this antenna-DNG shell system excited by a delta voltage across an infinitesimally narrow gap around the antenna center is obtained using the method of separation of the spheroidal scalar wave functions. Our results show that this electrically small dipole-DNG shell system has very high radiation efficiency comparing with the normal electrically small antenna due to the inductive effect of the MTMs shell that cancel with the capacitive effect of the electrically small antenna. It is found that the spheroidal shell can achieve more compact structure and higher radiated power ratio than the corresponding spherical shell. This dipole-DNG shell systems with different sizes are analyzed and discussed.
Citation
Ming Da Huang, and Soon Yim Tan, "Efficient Electrically Small Prolate Spheroidal Antennas Coated with a Shell of Double-Negative Metamaterials," Progress In Electromagnetics Research, Vol. 82, 241-255, 2008.
doi:10.2528/PIER08031604
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, New York, 2005.

2. Chu, L. J., "Physical limitations of omnidirectional antennas," J. Appl. Phys., Vol. 19, No. 12, 1163-1175, 1948.
doi:10.1063/1.1715038

3. Hansen, R. C., "Fundamental limitations in antennas," Proc. IEEE, Vol. 69, No. 2, 170-181, 1981.
doi:10.1109/PROC.1981.11950

4. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, 1996.
doi:10.1109/MAP.2004.1396731

5. Best, S. R., "A discussion on the properties of electrically small self-resonant wire antennas," IEEE Aantennas Propag. Mag., Vol. 46, No. 6, 9-22, 2004.
doi:10.2528/PIERL07111907

6. Kyi, Y. and J.-Y. Li, "Analysis of electrically small size conical antennas," Progress In Electromagnetics Research Letters, Vol. 1, 85-92, 2008.
doi:10.1109/TAP.2005.844415

7. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TAP.2003.817561

8. Ziolkowski, R. W. and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2626-2640, 2003.
doi:10.1109/TAP.2006.877179

9. Ziolkowski, R. W. and A. Erentok, "Metamaterials-based efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2113-2130, 2006.
doi:10.1163/156939306779322620

10. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322585

11. Chen, H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939307783152777

12. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H.-L. Li, "FDTD study on scattering of metallic columu covered by double-negative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783134452

13. Manzanares-Martinez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
doi:10.1163/156939307783134425

14. Yang, R., Y.-J. Xie, D. Li, J. Zhang, and J. Jiang, "Bandwidth enhancement of microstrip antennas with metamaterial bilayered substrates," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2321-2330, 2007.

15. Hamid, A.-K. and F. R. Cooray, "Radiation characteristics of a spheroidal slot antenna coated with isorefractive materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1605-1619, 2007.
doi:10.2528/PIERB07112803

16. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112906

17. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07121107

18. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique Incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.

19. Cui, T. J., H.-F. Ma, R. P. Liu, B. Zhao, Q. Cheng, and J. Y. Chin, "A symmetrical circuit model describing all kinds of circuit metamaterials," Progress In Electromagnetics Research B, Vol. 5, 63-76, 2008.
doi:10.2528/PIERL07111809

20. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wide-angle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.

21. Flammer, C., Spheroidal Wave Functions, Stanford University Press, Stanford, 1957.

22. Cooray, M. F. R. and I. R. Ciric, "Scattering of electromagnetic waves by a coated dielectric spheroid," Journal of Electromagnetic Waves and Applications, Vol. 6, 1491-1507, 1992.
doi:10.1163/156939305775701895

23. Huang, M. D. and S. Y. Tan, "Spheroidal phase mode processing for antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1431-1442, 2005.

24. Schelkunoff, S. A., Advanced Antenna Theory, Wiley, New York, 1952.

25. Do-Nhat, T. and R. H. MacPhie, "The input admittance of thin prolate spheroidal dipole antennas with finite gap widths," IEEE Trans. Antennas Propag., Vol. 43, No. 11, 1243-1252, 1995.
doi:10.1109/TAP.2002.803950

26. Li, L. W., M. S. Leong, T. S. Yeo, and Y. B. Gan, "“Electromagnetic radiation from a prolate spheroidal antenna enclosed in a confocal spheroidal radome," IEEE Trans. Antennas Propag., Vol. 50, No. 11, 1525-1533, 2002.
doi:10.1109/TAP.2005.863109

27. Capoglu, I. R. and G. S. Smith, "The input admittance of a prolate-spheroidal monopole antenna fed by a magnetic frill," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 572-585, 2006.