Vol. 82
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-03-30
Analysis of the Surface Magnetoplasmon Modes in the Semiconductor Slit Waveguide at Terahertz Frequencies
By
Progress In Electromagnetics Research, Vol. 82, 257-270, 2008
Abstract
The propagation properties of surface plasmon polaritons (SPP) modes and surface magnetoplasmon polaritons (SMP) modes in a semiconductor slit waveguide are analyzed by the effective dielectric constant approach, and the interaction of the external magnetic field with the dispersion properties and field distributions of SMP modes in the Voigt configuration are emphasized in our analysis. Both the symmetric structure and the asymmetric structure are discussed in details. In contrast to the SPP modes which have one propagation band below the plasmon frequency only, the SMP modes have both the low-frequency propagation band below the plasmon frequency and the high-frequency propagation band above the plasmon frequency. When the external magnetic field increases, the two bands of the SMP modes will separate further in frequency, and the even symmetric distribution of the fundamental mode, which usually associates with the SPP mode, will be destroyed. These results can provide some guidance for the design of the tunable semiconductor waveguide in the terahertz regime.
Citation
Fanmin Kong, Kang Li, Hui Huang, Bae-Ian Wu, and Jin Au Kong, "Analysis of the Surface Magnetoplasmon Modes in the Semiconductor Slit Waveguide at Terahertz Frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.
doi:10.2528/PIER08031224
References

1. Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep., Vol. 408, No. 3-4, 131-314, 2005.
doi:10.1016/j.physrep.2004.11.001

2. Prasad, P. N., Nanophotonics, Wiley-Interscience, New Jersey, 2004.

3. Ozbay, E., "Plasmonics: Merging photonics and electronics at manoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
doi:10.1126/science.1114849

4. Chang, C. K., D. Z. Lin, C. S. Yeh, et al. "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett., Vol. 90, No. 6, 2007.

5. Gordon, R., L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Trans. on Nanotechnology, Vol. 5, No. 3, 291-294, 2006.
doi:10.1109/TNANO.2006.874057

6. Lin, L., R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B, Vol. 74, No. 15, 2006.
doi:10.1103/PhysRevB.74.155407

7. Xiao, S., N. A. Mortensen, and M. Qiu, "Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer," Arxiv preprint Physics, 0703092, 2007.

8. Kong, F., B. I. Wu, H. Chen, et al. "Surface plasmon mode analysis of nanoscale metallic rectangular waveguide," Opt. Exp., Vol. 15, No. 19, 12331-12337, 2007.
doi:10.1364/OE.15.012331

9. Lin, L., R. J. Blaikie, and R. J. Reeves, "Surface-plasmon-enhanced optical transmission through planar metal films," Journal of Electromagnetic Waves and Applications, Vol. 19, 1721-1728, 2005.
doi:10.1163/156939305775696801

10. Seidel, J., "Surface plasmon transmission across narrow grooves in thin silver films," Appl. Phys. Lett., Vol. 82, No. 9, 1368, 2003.
doi:10.1063/1.1558219

11. Pile, D. F. P. and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett., Vol. 29, No. 10, 1069-1071, 2004.
doi:10.1364/OL.29.001069

12. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, et al. "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett., Vol. 95, No. 4, 46802, 2005.
doi:10.1103/PhysRevLett.95.046802

13. Breukelaar, I., R. Charbonneau, and P. Berini, "Long-range surface plasmon-polariton mode cutoff and radiation," Appl. Phys. Lett., Vol. 88, No. 5, 051119, 2006.
doi:10.1063/1.2172727

14. Maier, S. A., "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett., Vol. 81, No. 9, 1714, 2002.
doi:10.1063/1.1503870

15. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865

16. Imura, K., T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Chem. Phys., Vol. 122, No. 15, 154701, 2005.
doi:10.1063/1.1873692

17. El-Kady, I., M. M. Sigalas, R. Biswas, et al. "Metallic photonic crystals at optical wavelengths," Phys. Rev. B, Vol. 62, No. 23, 15299-15302, 2000.
doi:10.1103/PhysRevB.62.15299

18. Xu, C., X. Hu, Y. Li, et al. "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B, Vol. 68, No. 19, 193201, 2003.
doi:10.1103/PhysRevB.68.193201

19. Lan, Y. C., Y. C. Chang, and P. H. Lee, "Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons," Appl. Phys. Lett., Vol. 90, 171114, 2007.
doi:10.1063/1.2732827

20. Rivas, J. G., C. Janke, P. H. Bolivar, et al. "Transmission of THz radiation through InSb gratings of subwavelength apertures," Appl. Opt., Vol. 4, S83, 2002.

21. Rivas, J. G., C. Schotsch, P. H. Bolivar, et al. "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B, Vol. 68, 201306, 2003.
doi:10.1103/PhysRevB.68.201306

22. Kuttge, M., H. Kurz, J. G. Rivas, et al. "Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings," J. Appl. Phys., Vol. 101, 023707, 2007.
doi:10.1063/1.2409895

23. Rivas, J. G., C. Janke, P. Bolivar, et al. "Transmission of THz radiation through InSb gratings of subwavelength apertures," Opt. Exp., Vol. 13, No. 3, 847-859, 2005.
doi:10.1364/OPEX.13.000847

24. Rivas, J. G., M. Kuttge, P. H. Bolivar, et al. "Propagation of surface plasmon polaritons on semiconductor gratings," Phys. Rev. Lett., Vol. 93, No. 25, 256804, 2004.
doi:10.1103/PhysRevLett.93.256804

25. Kuttge, M., H. Kurz, J. G. Rivas, et al. "Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings," JPN. J. Appl. Phys., Vol. 101, 023707, 2007.

26. Kushwaha, M. S., "Plasmons and magnetoplasmons in semiconductor heterostructures," Surf. Sci. Rep., Vol. 41, No. 1-8, 1-416, 2001.
doi:10.1016/S0167-5729(00)00007-8

27. Eroglu, A. and J. K. Lee, "Dyadic Green’s functions for an electrically gyrotropic medium," Progress In Electromagnetics Research, Vol. 58, 223-241, 2006.
doi:10.2528/PIER05070203

28. Elmzughi, F. G. and D. R. Tilley, "Surface and guided-wave polariton modes of magnetoplasma films in the Voigt geometry," J. Phys.-Condens. Mat., Vol. 6, No. 23, 4233-4246, 1994.
doi:10.1088/0953-8984/6/23/003

29. Sarid, D., "Enhanced surface-magnetoplasma interactions in a semiconductor," Phys. Rev. B, Vol. 29, No. 4, 2344-2346, 1984.
doi:10.1103/PhysRevB.29.2344

30. Kushwaha, M. S. and P. Halevi, "Magnetoplasmons in thin films in the Voigt configuration," Phys. Rev. B, Vol. 36, No. 11, 5960-5967, 1987.
doi:10.1103/PhysRevB.36.5960

31. Kushwaha, M. S. and P. Halevi, "Magnetoplasmons in thin films in the perpendicular configuration," Phys. Rev. B, Vol. 38, No. 17, 12428-12435, 1988.
doi:10.1103/PhysRevB.38.12428

32. Huang, H., Y. Fan, B. I. Wu, et al. "Surface modes at the interfaces between isotropic media and uniaxial plasma," Progress In Electromagnetics Research, Vol. 76, 1-14, 2007.
doi:10.2528/PIER07062005

33. Eroglu, A. and J. K. Lee, "Wave propagation and dispersion characteristics for a nonreciprocal electrically gyrotropic medium," Progress In Electromagnetics Research, Vol. 62, 237-260, 2006.
doi:10.2528/PIER06040901

34. Kong, F. M., K. Li, B. I.Wu, et al. "Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203

35. Rozzi, T. and M. Mongiardo, Open Electromagnetic Waveguides, Institution of Electrical Engineers, London, 1997.

36. Marcatili, E. A. J., "Dielectric rectangular waveguide and directional coupler for integrated optics," The Bell System Technical Journal, Vol. 48, No. 7, 2071-2102, 1969.