Vol. 81
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-01-26
Multilevel Fast Multipole Algorithm for Radiation Characteristics of Shipborne Antennas Above Seawater
By
Progress In Electromagnetics Research, Vol. 81, 291-302, 2008
Abstract
Radiation characteristics of shipborne antennas above lossy half-space are studied using the multilevel fast multipole algorithm (MLFMA). The near terms in the MLFMA are evaluated by using the rigorous half-space dyadic Green's function, computed via the method of complex images. The far MLFMA interactions employ an approximate dyadic Green's function via a direct-radiation term plus a single real image, with the image amplitude characterized by the polarization-dependent Fresnel reflection coefficient. Finally, radiation patterns of an ultra-shortwave antenna mounted on a realistic 3-D ship over seawater are presented and compared with a rigorous method-ofmoments (MoM) solution.
Citation
Xun-Wang Zhao, Chang-Hong Liang, and Le Liang, "Multilevel Fast Multipole Algorithm for Radiation Characteristics of Shipborne Antennas Above Seawater," Progress In Electromagnetics Research, Vol. 81, 291-302, 2008.
doi:10.2528/PIER08012003
References

1. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Parts I and II," IEEE Trans. Antennas Propagat., Vol. 38, No. 3, 335-352, 1990.
doi:10.1109/8.52240

2. Geng, N. and L. Carin, "Wideband electromagnetic scattering from a dielectric BOR buried in a layered lossy, dispersive medium," IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 610-619, 1999.
doi:10.1109/8.768799

3. Su, D. Y., D. M. Fu, and D. Yu, "Genetic algorithm and method of moments for the design of PIFAS," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

4. Chang, H. S. and K. K. Mei, "Scattering of electromagnetic waves by buried and partly buried bodies of revolution," IEEE Trans. Geosci. Remote Sensing, Vol. 23, 596-605, 1985.
doi:10.1109/TGRS.1985.289452

5. Bourgeois, J. M. and G. S. Smith, "A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment," IEEE Trans. Geosci. Remote Sensing, Vol. 34, No. 1, 36-44, 1996.
doi:10.1109/36.481890

6. Ding, W., Y. Zhang, P. Y. Zhu, and C. H. Liang, "Study on electromagnetic problems involving combinations of arbitrarily oriented thin-wire antennas and inhomogeneous dielectric objects with a hybrid MoM-FDTD method," J. of Electromagn. Waves and Appl., Vol. 20, No. 11, 1519-1533, 2006.
doi:10.1163/156939306779274255

7. Zhang, Y., X. W. Zhao, M. Chen, and C. H. Liang, "An efficient MPI virtual topology based parallel, iterative MoM-PO hybrid method on PC clusters," J. of Electromagn. Waves and Appl., Vol. 20, No. 5, 661-676, 2006.
doi:10.1163/156939306776137782

8. Chen, M., X. W. Zhao, Y. Zhang, and C. H. Liang, "Analysis of antenna around NURBS surface with iterative MoM-PO technique," J. of Electromagn. Waves and Appl., Vol. 20, No. 12, 1667-1680, 2006.
doi:10.1163/156939306779292372

9. Geng, N., A. Sullivan, and L. Carin, "Fast multipole method for scattering from 3D PEC targets situated in a half-space environment," Microwave Opt. Technol. Lett., Vol. 21, 399-405, 1999.
doi:10.1002/(SICI)1098-2760(19990620)21:6<399::AID-MOP3>3.0.CO;2-Z

10. Geng, N., A. Sullivan, and L. Carin, "Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space," IEEE Trans. Antennas Propagat., Vol. 49, No. 5, 740-748, 2001.
doi:10.1109/8.929628

11. Geng, N., A. Sullivan, and L. Carin, "Multilevel fast-multipole algorithm for scattering from conducting targets above or embeded in a lossy half space," IEEE Trans. Antennas Propagat., Vol. 38, No. 7, 1561-1573, 2000.

12. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat Mag., Vol. 35, No. 6, 7-12, 1993.
doi:10.1109/74.250128

13. Song, J. M. and W. C. Chew, "Fast multipole method solution using parametric geometry," Microwave Opt. Technol. Lett., Vol. 7, 760-765, 1994.
doi:10.1002/mop.4650071612

14. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microwave Opt. Technol. Lett., Vol. 10, 14-19, 1995.
doi:10.1002/mop.4650100107

15. Zhao, X. W., X. J. Dang, Y. Zhang, and C. H. Liang, "MLFMA analysis of waveguide arrays with narrow-wall slots," J. of Electromagn. Waves and Appl., Vol. 21, No. 8, 1063-1078, 2007.

16. Zhao, X. W., X. J. Dang, Y. Zhang, and C. H. Liang, "The multilevel fast multipole algorithm for EMC analysis of multiple antennas on electrically large platforms," Progress In Electromagnetics Research, Vol. 69, 161-176, 2007.
doi:10.2528/PIER06121003

17. Wallen, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetics Research, Vol. 55, 47-78, 2005.
doi:10.2528/PIER05021001

18. Pan, X. M. and X. Q. Sheng, "A highly efficient parallel approach of multi-level fast multipole algorithm," J. of Electromagn. Waves and Appl., Vol. 20, No. 8, 1081-1092, 2006.
doi:10.1163/156939306776930321

19. Li, L. and Y. Xie, "Efficient algorithm for analyzing microstrip antennas using fast-multipole algorithm combined with fixed realimage simulated method," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2177-2188, 2006.
doi:10.1163/156939306779322521

20. Ouyang, J., F. Yang, S. W. Yang, and Z. P. Nie, "Exact simulation method VSWIE+MLFMA for analysis radiation pattern of probe-feed conformal microstrip antennas and the application of synthesis radiation pattern of conformal array mounted on finite-length PEC circular cylinder with DES," J. of Electromagn. Waves and Appl., Vol. 21, No. 14, 1995-2008, 2007.
doi:10.1163/156939307783152803

21. Wang, P., Y. J. Xie, and R. Yang, "Novel pre-corrected multilevel fast multipole algorithm for electrical large radiation problem," J. of Electromagn. Waves and Appl., Vol. 21, No. 13, 1733-1743, 2007.

22. Wang, P. and Y. J. Xie, "Scattering and radiation problem of surface/surface junction structure with multilevel fast multipole algorithm," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2189-2200, 2006.
doi:10.1163/156939306779322567

23. Aksun, M. I., "A robust approach for the derivation of closedform Green's functions," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 5, 651-658, 1996.
doi:10.1109/22.493917

24. Zhang, Y., Parallel Computation in Electromagnetics, Xidian University Press.

25. Hodges, R. E. and Y. Rahmat-Samii, "The evaluation of MFIE integrals with the use of vector triangle basis functions," Microwave Opt. Technol. Lett., Vol. 14, 9-14, 1997.
doi:10.1002/(SICI)1098-2760(199701)14:1<9::AID-MOP4>3.0.CO;2-P

26. Wang, M., "Prediction for the pattern of the antenna in a complex environment," Ph.D. dissertation, 2006.