Vol. 78
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-10-17
High Gain Rectangular Broad Band Microstrip Antenna with Embedded Negative Capacitor and Chip Resistor
By
, Vol. 78, 421-436, 2008
Abstract
Various communication systems require single radiating element operating in wide band. In this paper, a novel active integrated single microstrip antenna is proposed and its radiation pattern and gain performance is optimized with analysis. The reactive loading is provided by a negative capacitor section embedded within the patch. The active negative capacitor is made of a field-effect transistor that exhibits negative resistance as well as capacitance. It can, therefore, compensate the loss of an inductor. A microstrip patch operating at 10.5 GHz having 12.2% bandwidth has been utilized as a reference antenna. With the proposed antenna design, the antenna radiation pattern can be as large as about 1.5 times that of an antenna without reactive loading. In addition, it has been shown that active compensation significantly improves the matching level.
Citation
Adnan Kaya, "High Gain Rectangular Broad Band Microstrip Antenna with Embedded Negative Capacitor and Chip Resistor," , Vol. 78, 421-436, 2008.
doi:10.2528/PIER07100202
References

1. Benalla, A. and C. Gupta, "Multiport network model and transmission characteristics of two-port rectangular microstrip patch antennas," IEEE Trans. Antennas and Propagation, Vol. 36, 1337-1342, 1998.
doi:10.1109/8.8618

2. Chair, R., K. M. Luk, and K. F. Lee, "Miniature multiplayer shorted patch antenna," Electron. Lett., Vol. 36, 3-4, 2000.
doi:10.1049/el:20000029

3. Chen, H. M., "Dual-frequency-microstrip antenna with embedded reactive loading," Microwave and Optical Technology Letters, Vol. 23, 186-188, 1999.
doi:10.1002/(SICI)1098-2760(19991105)23:3<186::AID-MOP16>3.0.CO;2-A

4. Elsdon, M. and Y. Qin, "Dual-frequency planar-fed microstrip patch antenna," Microwave and Optical Technology Letter, Vol. 48, 1053-1054, 2006.
doi:10.1002/mop.21598

5. Fang, S. T., T. W. Chiou, and K. L. Wong, "Broadband equilateral-triangular microstrip antenna with asymmetric bent slots and integrated reactive loading," Microwave and Optical Technology Letters, Vol. 23, 149-151, 1999.
doi:10.1002/(SICI)1098-2760(19991105)23:3<149::AID-MOP6>3.0.CO;2-6

6. Garg, R., P. Bahartia, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, London, 2001.

7. Hsieh, G. B., "Dual-frequency rectangular microstrip antenna with an inserted integrated reactive loading," Microwave and Optical Technology Letters, Vol. 32, 219-221, 2002.
doi:10.1002/mop.10136

8. Koley, S. and J. L. Gautier, "Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology," IEEE Trans. on Microwave Theory and Techniques, Vol. 49, 2425-2430, 2001.
doi:10.1109/22.971631

9. Mingo, J., A. Valdovinos, A. Crepo, and P. Garcia, "An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system," IEEE Trans. on Microwave Theory and Tech., Vol. 52, 489-492, 2004.
doi:10.1109/TMTT.2003.821909

10. Wong, K. L. and J. Y. Jan, "Broadband circular microstrip antenna with embedded reactive loading," Electron. Lett., Vol. 34, 1804-1805, 1998.
doi:10.1049/el:19981316

11. Cooray, F. R. and J. S. Kot, "Analysis of radiation from a cylindrical-rectanguar microstrip patch antenna loaded with a supersrate and an air gap, using the electric surface current model," Progress In Electromagnetics Research, Vol. 67, 135-152, 2007.
doi:10.2528/PIER06080304

12. Yun, W. and Y. Yoon, "A wide-band aperture coupled microstrip array antenna using inverted feeding structures," IEEE Antennas and Propagat., Vol. 53, 861-862, 2005.
doi:10.1109/TAP.2004.841283

13. Ghosh, S., A. Chakrabarty, and S. Sanyal, "Loaded wire antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 54, 19-36, 2005.
doi:10.2528/PIER04080501

14. Ghosh, S. and A. Chakrabarty, "Estimation of equivalent circuit of loaded trans-receive antenna system and its time domain studies," Journal of Electromagnetic Waves and Applications, Vol. 20, 89-103, 2007.
doi:10.1163/156939306775777314

15. Hamid, A. K., "Multi-dielectric loaded axially slotted antenna on circular or elliptic cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, 1259-1271, 2006.
doi:10.1163/156939306777442980

16. Lee, K.-C., "Frequency-domain analyses of nonlinearly loaded antenna arrays using simulated annealing algoritms," Progress In Electromagnetics Research, 271-281, 2005.
doi:10.2528/PIER04101501

17. Ang, B.-K. and B.-K. Chung, "Wide band E-shaped microstrip patch antenna for 5-6Ghz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

18. Liu, X. F., Y. B. Chen, Y. C. Jiao, and F. S. Zhang, "Modified particle swarm optimization for patch antenna design based on IE3D," Journal of Electromagnetic Waves and Applications, Vol. 21, 1819-1828, 2007.

19. Chou, H. T., L. R. Kuo, and W. J. Liao, "Characteristics evaluation of an active pacth antenna structure with an embedded LNA module for GPS reception," Journal of Electromagnetic Waves and Applications, Vol. 21, 599-614, 2007.
doi:10.1163/156939307780667283