Vol. 70
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-01-20
Structural Parameters in the Formation of Omnidirectional High Reflectors
By
Progress In Electromagnetics Research, Vol. 70, 53-78, 2007
Abstract
We investigate the structural parameters for the formation of omnidirectional photonic band gap in one dimensional photonic crystal. Simple transfer matrix method is used for calculations. The effect of two parameters, namely, refractive index contrast and filling fraction on omnidirectional reflection is investigated. We find from our study that when nL, ni, ns and d are fixed, omnidirectional bandgap increases with increasing nH/nL i.e., with increasing nH. Therefore, omnidirectional bandgap can be increased by using the material of high refractive index nH when the low index material nL is fixed. We also find that for the considered system of Si-SiO2, omnidirectional reflection range increases with filling fraction, goes to a maximum value and finally comes to zero. The maximum value of the omnidirectional reflection range is obtained at a value of 0.29 of the filling fraction. The range for allowable values of refractive index of ambient medium ni has also been estimated.
Citation
Sudesh Singh, Janardan Pandey, Khem Thapa, and Sant Ojha, "Structural Parameters in the Formation of Omnidirectional High Reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.
doi:10.2528/PIER07010501
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photon in certain disordered dielectric superlattice," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Guida, G., A. de Lustrac, and A. Priou, "An introduction to photonic band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
doi:10.2528/PIER02010801

4. Maka, T., D. N. Chigrin, S. G. Romanov, and C. M. Sotomayor Torres, "Three dimensional photonic crystals in the visible regime," Progress In Electromagnetics Research, Vol. 41, 307-335, 2003.

5. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

6. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Optics Letters, Vol. 23, 1573-1575, 1998.

7. Chen, K. M., A. W. Sparks, H.-C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, "SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method," Appl. Phys. Lett., Vol. 75, 3805-3807, 1999.
doi:10.1063/1.125462

8. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A, Vol. 68, 25-28, 1999.
doi:10.1007/s003390050849

9. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightwave Technol., Vol. 17, 2018-2024, 1999.
doi:10.1109/50.802989

10. Lee, H.-Y. and T. Yao, "Design and evaluation of omnidirectional one-dimensional photonic crystals," J. Appl. Phys., Vol. 93, 819-8302003, 8302.
doi:10.1063/1.1530726

11. Yonte, T., J. J. Monz'on, A. Felipe, and L. L. S'anchez-Soto, "Optimizing omnidirectional reflection by multilayer mirrors," J. Opt. A: Pure Appl. Opt., Vol. 6, 127-131, 2004.
doi:10.1088/1464-4258/6/1/023

12. Rojas, J. A. M., J. Alpuente, J. PiËœneiro, and R. Sanchez, "Rigorous full vectorial analysis of electromagnetic wave propagation in 1D," Progress In Electromagnetics Research, Vol. 63, 89-105, 2006.
doi:10.2528/PIER06042501

13. Wu, C.-J., "Transmission and reflection in a periodic superconductor/ dielectric film multilayer structure," J. Electromagn. Waves Appl., Vol. 19, 1991-1996, 2006.
doi:10.1163/156939305775570468

14. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimensional generalized multilayer fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
doi:10.2528/PIER05091701

15. Hosomi, K., T. Fukamachi, H. Yamada, T. Katsuyama, and Y. Arakawa, "Optical characteristics of one-dimensional photonic crystals composed of high-aspect-ratio Si walls fabricated on Vgrooved wafer," Photonics and Nanostructures — Fundamentals and Applications, Vol. 4, 30-34, 2006.
doi:10.1016/j.photonics.2005.11.005

16. Lin, W., G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Modern Optics, Vol. 52, 1155-1160, 2005.
doi:10.1080/09500340512331327606

17. Almeida, R. M. and S. Portal, "Photonic band gap structures by sol-gel processing," Current Opinion in Solid State and Materials Science, Vol. 7, 151-157, 2003.
doi:10.1016/S1359-0286(03)00045-7

18. Park, Y., Y.-G. Roh, C.-O. Cho, H. Jeon, M. G. Sung, and J. C. Woo, "GaAs-based near-infrared omnidirectional reflector," Appl. Phys. Lett., Vol. 82, 2770-2772, 2003.
doi:10.1063/1.1569045

19. Zheng, Q. R., Y. Q. Fu, and N. C. Yuan, "Characteristics of planar PBG structures with a cover layer," J. Electromagn. Waves Appl., Vol. 20, 1439-1453, 2006.
doi:10.1163/156939306779274264

20. Jewell, J. L., J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization," IEEE J. Quantum Electron., Vol. 27, 1332-1346, 1991.
doi:10.1109/3.89950

21. Lee, H.-Y. and T. Yao, "TiO2(ZnS)/SiO2 one-dimensional photonic crystals and a proposal for vertical micro-cavity resonators," J. Korean Physical Society, Vol. 44, 387-392, 2004.

22. Knight, J. C., T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, "Photonic crystals as optical fibres — physics and applications," Optical Materials, Vol. 11, 143-151, 1998.
doi:10.1016/S0925-3467(98)00040-8

23. Russell, P., "Photonic crystal fibers," Science, Vol. 299, 358-362, 2003.
doi:10.1126/science.1079280

24. Guenneu, S., A. Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003.

25. Lo, S.-S., M.-S. Wang, and C.-C. Chen, "Semiconductor hollow optical waveguides formed by omni-directional reflectors," Optics Express, Vol. 12, 6589-6593, 2004.
doi:10.1364/OPEX.12.006589

26. Wu, B.-I., E. Yang, J. A. Kong, J. A. Oswald, K. A. McIntosh, L. Mahoney, and S. Verghese, "Analysis of photonic crystal filters by the finite-difference time-domain technique," Microwave and Opt. Technol. Lett., Vol. 27, 81-87, 2000.
doi:10.1002/1098-2760(20001020)27:2<81::AID-MOP2>3.0.CO;2-S

27. Kim, S.-H. and C. K. Hwangbo, "Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands," Applied Optics, Vol. 41, 3187-3192, 2002.

28. Lusk, D. and F. Placido, "Omnidirectional mirror coating design for infrared applications," Thin Solid Films, Vol. 492, 226-231, 2005.
doi:10.1016/j.tsf.2005.06.053

29. Liu, K., X. D. Yuan, W. M. Ye, J. R. Ji, M. Zeng, and C. Zeng, "Optical filter based on omnidirectional reflectors," Appl. Phys. B, Vol. 82, 391-393, 2006.
doi:10.1007/s00340-005-2087-8

30. Ojha, S. P., P. K. Choudhary, P. Khastgir, and O. N. Singh, "Operating characteristics of an optical fibre with a linearly periodic refractive index pattern in the filter material," Japanese J. Appl. Phys., Vol. 31, 1992.
doi:10.1143/JJAP.31.281

31. Srivastava, S. K. and S. P. Ojha, "Operating characteristics of an optical filter using metallic photonic band gap materials," Microwave Opt. Technol. Lett., 68-71, 2002.
doi:10.1002/mop.10518

32. Banerjee, A., S. K. Awasthi, U. Malaviya, and S. P. Ojha, "Design of a nano-layered tunable optical filter," J. of Modern Optics, Vol. 53, 1739-1752, 2006.
doi:10.1080/09500340600590547

33. Xiao, H. and D. Yao, "Analysis of the design of a new tunable photonic crystal filter at visible band," Physica E, Vol. 27, 1-4, 2005.
doi:10.1016/j.physe.2004.09.009

34. Lee, B. J., C. J. Fu, and Z. M. Zhang, "Coherent thermal emission from one-dimensional photonic crystals," Appl. Phys. Lett., Vol. 87, 071904, 2005.
doi:10.1063/1.2010613

35. Lee, H.-Y., H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 µm," Appl. Phys. Lett., Vol. 81, 4502-4504, 2002.
doi:10.1063/1.1524291

36. Yi, Y., P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, "Tunable multichannel optical filter based on silicon photonic band gap materials actuation," Appl. Phys. Lett., Vol. 81, 4112-41142002, 4112.
doi:10.1063/1.1525072

37. O'Sullivan, F., I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, "Optical characteristics of onedimensional Si/SiO2 photonic crystals for thermophotovoltaic applications," J. Appl. Phys., Vol. 97, 033529, 2005.
doi:10.1063/1.1849437

38. Bruyant, A., G. Le'rondel, P. J. Reece, and M. Gal, "Allsilicon omnidirectional mirrors based on one-dimensional photonic crystals," Appl. Phys. Lett., Vol. 82, 3227-3229, 2003.
doi:10.1063/1.1574403

39. Patrini, M., M. Galli, M. Belotti, L. C. Andreani, G. Guizzetti, G. Pucker, A. Lui, P. Bellutti, and L. Pavesi, "Optical response of one-dimensional (Si/SiO2)m photonic crystals," J. Appl. Phys., Vol. 92, 1816-1820, 2002.
doi:10.1063/1.1492866

40. Born, M. and E. Wolf, Principles of Optics, Pergamon, New York, 1980.

41. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.