Vol. 62
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-05-28
Modelling the Passive Microwave Remote Sensing of Wet Snow
By
Progress In Electromagnetics Research, Vol. 62, 143-164, 2006
Abstract
Combined volume scattering with rough surface scattering effects in passive microwave remote sensing of wet snow is studied in this paper. The dense medium radiative transfer (DMRT) theory with quasicrystalline approximation (QCA) is used to describe the volume scattering model for densely distributed sticky coated dielectric particles. The Numerical Maxwell Model of 3D simulations (NMM3D) is used to simulate the rough surface bistatic scattering and emission, and the bistatic scattering coefficients and emissivity of the rough surfaces are utilized as the boundary conditions for the DMRT. Full multiple scattering solutions are calculated by solving the DMRT numerically. Wet snow model is adopted in this paper, the results are illustrated for a layer of wet snow over a moist rough ground at 18.7 GHz and 38.5GHz.
Citation
Zhong-Xin Li, "Modelling the Passive Microwave Remote Sensing of Wet Snow," Progress In Electromagnetics Research, Vol. 62, 143-164, 2006.
doi:10.2528/PIER05102402
References

1. Lam, C. M. and A. Ishimaru, "Mueller matrix calculation for a slab of random medium with both random rough surfaces and discrete particles," IEEE Transactions on Antenna and Propagation, Vol. 42, No. 2, 145-156, 1994.
doi:10.1109/8.277208

2. Zhou, L., L. Tsang, and D. Chen, "Polarimetric microwave remote sensing of wind vectors with foam covered rough ocean surfaces," Radio Science, Vol. 38, No. 4, 2003.
doi:10.1029/2002RS002764

3. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2, Wiley Interscience, 2001.

4. Tsang, L. and J. A. Kong, Scattering of Electromagnetics Waves, Vol. 3, Wiley Interscience, 2001.

5. Zhou, L., L. Tsang, V. Jandhyala, Q. Li, and C. H. Chan, "Emissivity simulations in passive microwave remote sensing with 3-D numerical solutions of Maxwell equations," IEEE transactions on Geoscience and Remote Sensing, Vol. 42, No. 8, 1739-1748, 2004.
doi:10.1109/TGRS.2004.830639

6. Arslan, A. N., H. Wang, J. Pulliainen, and M. Hallikainen, "Effective permittivity of wet snow using strong fluctuation theory," Journal of Electromagnetic Waves and Applications, Vol. 15, 53-55, 2001.

7. Ding, K. H. and L. Tsang, "Effective propagation constants and attenuation rates in media of densely distributed coated dielectric particles with size distribution," Journal of Electromagnetic Waves Application, Vol. 5., No. Vol. 5. 2, 117, 1991.

8. Ding, K. H., L. M. Zurk, and L. Tsang, "Pair distribution functions and attenuation rates for sticky particles in dense media," Journal of Electromagnetic Waves Application, Vol. 8, No. 12, 1585-1604, 1994.

9. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetics Waves, Vol. 1, Wiley Interscience, 2000.

10. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley Interscience, 1985.

11. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 1983.