Vol. 50
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-10-12
A Fast Analysis of Scattering from Microstrip Antennas Over a Wide Band
By
Progress In Electromagnetics Research, Vol. 50, 187-208, 2005
Abstract
An efficient algorithm combining the fast multipole method (FMM) and the characteristic basis function method (CBFM) for analysis of scattering from microstrip antennas over a wide band is introduced in this paper. In the hybrid algorithm, the characteristic basis function method is used to construct the currents on microstrip antennas by using characteristic basis functions (CBFs) which are constructed from the solution vectors at several samples using the singular value decomposition (SVD), thus obviating the need to repeatedly compute using a computational electromagnetic code and repeatedly solve a large method of moments matrix system at each point within the wide band of interest. The fast multipole method is used to obtain the solution vectors at these samples and speed up the matrix-vector product in the characteristic basis function method (CBFM). The resultant hybrid algorithm (FMM-CBFM) eliminates the need to generate and store the usual square impedance matrix and repeatedly use an iterative solver at each point and thus leads to a significant reduction in memory requirement and computational cost. Numerical examples are given to illustrate the accuracy and robustness of this method.
Citation
J. Wan, and Chang-Hong Liang, "A Fast Analysis of Scattering from Microstrip Antennas Over a Wide Band," Progress In Electromagnetics Research, Vol. 50, 187-208, 2005.
doi:10.2528/PIER04052801
References

1. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 10, 1225-1251, 1996.
doi:10.1029/96RS02504

2. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 3, 7-12, 1993.
doi:10.1109/74.250128

3. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

4. Canning, F. X., "The impedance matrix localization (IML) method for moment-method calculations," IEEE Antennas Propagat. Mag., Vol. 32, No. 10, 18-30, 1990.
doi:10.1109/74.80583

5. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, No. 5, 635-640, 1986.
doi:10.1109/TAP.1986.1143871

6. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 16, No. 10, 1059-1072, 1997.
doi:10.1109/43.662670

7. Ling, F., J. Song, and J.-M. Jin, "Multilevel fast multipole algorithm for analysis of large-scale microstrip structures," IEEE Microwave Guided Wave Lett., Vol. 9, No. l2, 508-510, 1999.
doi:10.1109/75.819414

8. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closed-form spatial Green's function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, 588-592, 1991.
doi:10.1109/22.75309

9. Pillage, L. T., et al. "Asymptotic waveform evaluation for timing analysis," IEEE Trans. Comput.-Aided Des. Integrated Circuits and Syst., Vol. 9 No. 4, No. Vol. 9 4, 352-366, 1990.
doi:10.1109/43.45867

10. Wan, J. X. and C. H. Liang, "Rapid solutions of scattering from microstrip antennas using well-conditioned asymptotic waveform evaluation," Progress In Electromagnetics Research, Vol. PIER 49, 39-52, 2004.
doi:10.2528/PIER04021202

11. Lehmensiek, R. and P. Meyer, "An efficient adaptive frequency sampling algorithm for model-based parameter estimation as applied to aggressive space mapping," Microwave Opt. Technol. Lett., Vol. 24, No. 1, 71-78, 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<71::AID-MOP20>3.0.CO;2-O

12. Prakash, V. V. S., J. Yeo, and R. Mittra, "An adaptive algorithm for fast frequency response computation of planar microwave structures," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 920-926, 2004.
doi:10.1109/TMTT.2004.823574

13. Mosig, J. R., "Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 2, 314-323, 1988.
doi:10.1109/22.3520

14. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas and Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

15. Wan, J. X., T. M. Xiang, and C. H. Liang, "Fast multipole algorithm for analysis of large-scale microstrip antennas arrays," Progress In Electromagnetics Research, Vol. PIER 49, 239-255, 2004.
doi:10.2528/PIER04042201

16. Wang, C. F., F. Ling, and J. M. Jin, "A fast full-wave analysis of scattering and radiation from large finite arrays of microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 46, No. 10, 1467-1474, 1998.
doi:10.1109/8.725278

17. King, A. S. and W. J. Bow, "Scattering from a finite array of microstrip patches," IEEE Trans. Antennas Propagat., Vol. 40, No. 7, 770-774, 1992.
doi:10.1109/8.155741

18. Saad, Y., "ILUT: a dual threshold incomplete LU factorization," Numer. Linear Algebra Appl., Vol. 1, 387-402, 1994.
doi:10.1002/nla.1680010405

19. Ling, F. and J. M. Jin, "Scattering and radiation analysis of microstrip antennas using discrete complex image method and reciprocity theorem," Microwave Opt. Technol. Lett., Vol. 16, No. 4, 212-216, 1997.
doi:10.1002/(SICI)1098-2760(199711)16:4<212::AID-MOP5>3.0.CO;2-O