Vol. 49
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Low-Frequency Solution for a Perfectly Conducting Sphere in a Conductive Medium with Dipolar Excitation
By
, Vol. 49, 87-111, 2004
Abstract
This contribution concerns the interaction of an arbitrarily orientated, time-harmonic, magnetic dipole with a perfectly conducting sphere embedded in a homogeneous conductive medium. A rigorous low-frequency expansion of the electromagnetic field in positive integral powers (jk)n, k complex wavenumber of the exterior medium, is constructed. The first n = 0 vector coefficient (static or Rayleigh) of the magnetic field is already available, so emphasis is on the calculation of the next two nontrivial vector coefficients (at n = 2 and at n = 3) of the magnetic field. Those are found in closed form from exact solutions of coupled (at n = 2, to the one at n = 0) or uncoupled (at n = 3) vector Laplace equations. They are given in compact fashion, as infinite series expansions of vector spherical harmonics with scalar coefficients (for n = 2). The good accuracy of both in-phase (the real part) and quadrature (the imaginary part) vector components of the diffusive magnetic field are illustrated by numerical computations in a realistic case of mineral exploration of the Earth by inductive means. This canonical representation, not available yet in the literature to this time (beyond the static term), may apply to other practical cases than this one in geoelectromagnetics, whilst it adds useful reference results to the already ample library of scattering by simple shapes using analytical methods.
Citation
Panayiotis Vafeas, G. Perrusson, and Dominique Lesselier, "Low-Frequency Solution for a Perfectly Conducting Sphere in a Conductive Medium with Dipolar Excitation," , Vol. 49, 87-111, 2004.
doi:10.2528/PIER04021905
References

1. Xiong, Z. and A. C. Tripp, "Electromagnetic scattering of large structures in layered earths using integral equations," Radio Science, Vol. 30, 921-929, 1995.
doi:10.1029/95RS00833

2. Oristaglio, M. L. and B. R. Spies (eds.), Three Dimensional Electromagnetics, SEG, Tulsa, 1999.

3. Kaufman, A. A. and G. V. Keller, Inductive Mining Prospecting, Elsevier Science, New York, 1985.

4. Bourgeois, B., K. Suignard, and G. Perrusson, "Electric and magnetic dipoles for geometric interpretation of three-component electromagnetic data in geophysics," Inverse Problems, Vol. 16, 1225-1262, 2000.
doi:10.1088/0266-5611/16/5/308

5. Dassios G. and R. E. Kleinman, Low Frequency Scattering, Low Frequency Scattering, Oxford University Press, Oxford, 2000.

6. Perrusson, G., D. Lesselier, M. Lambert, B. Bourgeois, A. Charalambopoulos, and G. Dassios, "Conductive masses in a half-space Earth in the diffusive regime: Fast hybrid modeling of a low-contrast ellipsoid," IEEE Trans. Geoscie. Remote Sensing, Vol. 38, 1585-1599, 2000.
doi:10.1109/36.851958

7. Habashy, T. M., R. W. Groom, and B. R. Spies, "Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering," J. Geophys. Res., Vol. 98, 1759-1775, 1993.

8. Charalambopoulos, A., G. Dassios, G. Perrusson, and D. Lesselier, "The localized nonlinear approximation in ellipsoidal geometry: a novel approach to the low frequency problem," Int. J. Engineer. Scie., Vol. 40, 67-91, 2002.
doi:10.1016/S0020-7225(01)00048-9

9. Hobson, E. W., The Theory of Spherical and Ellipsoidal Harmonics, Chelsea, New York, 1955.

10. Perrusson, G., D. Lesselier, P. Vafeas, G. Kamvyssas, and G. Dassios, "Low-frequency electromagnetic modeling and retrieval of simple orebodies in a conductive Earth," Progress in Analysis, Vol. 2, 1413-1422, 2003.

11. Ao, O. C., H. Braunisch, K. O'Neill, and J. A. Kong, "Quasimagnetostatic solution for a conducting and permeable spheroid with arbitrary excitation," IEEE Trans. Geoscie. Remote Sensing, Vol. 39, 2689-2701, 2001.
doi:10.1109/36.975003

12. Bowman, J. J., P. L. Uslenghi, and T. B. Senior (eds.), Electromagnetic and Acoustic Scattering by Simple Shapes, J. J. North Holland, Amsterdam, 1969.

13. Varadan, V. K. and V. V. Varadan (eds.), Acoustic, Electromagnetic and Elastic Wave Scattering. Low and High Frequency Asympotics, North Holland, Amsterdam, 1987.

14. Perrusson, G.P. Vafeas, and D. Lesselier, "Low-frequency modeling of the interaction of magnetic dipoles and ellipsoidal bodies in a conductive medium," Proc. 2004 Int. URSI Symp. Electromagn. Theory, 2004.

15. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, Vol. I, II, McGraw-Hill, New York, 1953.

16. Tortel, H., "Electromagnetic imaging of a three-dimensional perfectly conducting object using a boundary integral formulation," Inverse Problems, Vol. 20, 385-398, 2004.
doi:10.1088/0266-5611/20/2/005

17. Dassios, G. and P. Vafeas, "Comparison of differential representations for radially symmetric Stokes flow," Abstract and Applied Analysis, 2004.