Vol. 41
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Three Dimensional Photonic Crystals in the Visible Regime
By
, Vol. 41, 307-335, 2003
Abstract
3-dimensional photonic bandgap structures working in the visible have been given increasing attention in recent years encouraged by the possibility to control, modify or confine electromagnetic waves in all three dimensions, since this could have considerable impact on novel passive and active optical devices and systems. Although substantial progress has been made in the fabrication of 3D Photonic crystals by means of nano-lithography and nanotechnology, it still remains a challenge to fabricate these crystals with feature sizes of the half of the wavelength in the visible. Self-assembling of colloidal particles is an alternative method to prepare 3-dimensional photonic crystals. The aim of this article is to show how to use colloidal crystals as templates for photonic crystals and how to monitor the changes of their optical properties due course of the modification.
Citation
"Three Dimensional Photonic Crystals in the Visible Regime," , Vol. 41, 307-335, 2003.
doi:10.2528/PIER02010894
References

1. Bykov, V. P., "Spontaneous emission in a periodic structure," Sov. Phys. JETP, Vol. 35, 1972.

2. Yablonovich, E., "Inhibited spontaneous emission in solid-state physics and electronics,'' Phys. Rev. Lett., Vol. 58, 2059, 1987. John, S., Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 1987.

3. Noda, S., N. Yamamoto, M. Imrada, H. Kobayashi, and M. Okato, "Alignment and stacking of semiconductor photonic bandgaps by wafer-fusion," J. Lightwave Technol., Vol. 17, 1999.
doi:10.1109/50.802979

4. Cuisin, C., A. Chelnokov, J. M. Lourtioz, D. Decanini, and Y. Chen, "Fabrication of three-dimensional photonic structures with submicrometer resolution by x-ray lithography," J. Vac. Sci. Technol. B, Vol. 18, 2000.
doi:10.1116/1.1319825

5. Wang, K., A. Chelnokov, S. Rowson, P. Garoche, and J. M. Lourtioz, "Focused-ion-beam etching in macroporous silicon to realize three-dimensional photonic crystals," J. Phys. D: Appl. Phys., Vol. 33, 2000.

6. Lin, S. Y. and J. G. Fleming, "A three dimensional optical photonic crystal," J. Lightwave Technol., Vol. 17, 2000.

7. Champbell, M., D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature, Vol. 404, 2000.

8. Kuramochi, E., M. Notomi, T. Tamamura, T. Kawashima, S. Kawakami, J. Takahashi, and C. Takahashi, "Drilled alternating-layer structure for three-dimensional photonic crystals with a full band gap," J. Vac. Sci. Technol. B, Vol. 18, 2000.

9. Stöber, W., A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," J. Colloid. Interface Sci., Vol. 26, 1968.

10. Míguez, H., F. Meseguer, C. L´opez, A. Mifsud, J. S. Moya, and L. Vaazquez, "Evidence of fcc crystallization of SiO2 nanospheres," Langmuir, Vol. 13, 1997.

11. Holgado, M., F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. L´opez, "Electrophoretic deposition to control artificial opal growth," Langmuir, Vol. 15, 1999.
doi:10.1021/la990161k

12. Vlasov, Yu. A., V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E, Vol. 61, 2000.

13. Xia, Y., B. Gates, Y. Yin, and Y. Lu, "Monodispersed colloidal spheres: old Materials with new applications," Adv. Mat., Vol. 12, 2000.
doi:10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J

14. Rogach, A., A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmuller, and H. Weller, "Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-μm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells," Adv. Mat., Vol. 12, 3, 2000.
doi:10.1002/(SICI)1521-4095(200003)12:5<333::AID-ADMA333>3.0.CO;2-X

15. Astratov, V. N., V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Yu. A. Vlasov, "Optical spectroscopy of opal matrices with CdS embedded in its pores: Quantum confinement and photonic bandgap effects," Il Nuovo Cimento, Vol. 17D, 1995.

16. Romanov, S. G., A. V. Fokin, V. V. Tredijakov, V. Y. Butko, V. I. Alperovich, N. P. Johnson, and C. M. Sotomayor Torres, "Optical properties of ordered three-dimensional arrays of structurally confined semiconductors," J. Crystal Growth, Vol. 159, 1996.

17. Vlasov, Yu. A., M. Deutsch, and D. J. Norris, "Single-domain spectroscopy of self-assembled photonic crystals," Appl. Phys. Lett., Vol. 76, 2000.
doi:10.1063/1.126117

18. Van Blaaderen, A., R. Ruel, and P. Wiltzius, "Template-directed colloidal crystallization," Nature, Vol. 385, 1997.
doi:10.1038/385321a0

19. Goodwin, J. W., J. Hearn, C. C. Ho, and R. H. Ottewill, "Studies on the preparation and characterisation of monodisperse polystyrene latices," Colloid Polym. Sci., Vol. 252, 1974.

20. Gates, B., D. Qin, and Y. Xia, "Assembly of nanoparticles into opaline structures over large areas," Adv. Mat., Vol. 11, 1999.
doi:10.1002/(SICI)1521-4095(199904)11:6<466::AID-ADMA466>3.0.CO;2-E

21. Kralchevsky, P. A., N. D. Denkov., V. N. Paunov, O. D. Velev, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Formation of two-dimensional colloid crystals in liquid films under the action of capillary forces," J. Phys.: Condens. Matter, Vol. 6, 1994.
doi:10.1088/0953-8984/6/23A/065

22. Amos, R., J. G. Rarity, P. R. Tapster, and T. J. Shepherd, "Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment," Phys. Rev. E, Vol. 61, 2000.
doi:10.1103/PhysRevE.61.2929

23. Vos, W. L. and H. M. van Driel, "Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap," Physics Letters A, Vol. 272, 2000.
doi:10.1016/S0375-9601(00)00388-1

24. Bertone, J. F., P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, "Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,'' Phys. Rev. Lett., Vol. 83, 300, 1999. Romanov, S. G., T. Maka, C. M. Sotomayor Torres, M. Muller, and R. Zentel, Thin film photonic crystals," Synthetic Metals, Vol. 116, No. 5, 2001.

25. Reynolds, A., F. L´opez-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin, and J. Sanchez-Dehesa, "Spectral properties of opalbased photonic crystals having a SiO2 matrix," Phys. Rev. B., Vol. 60, 11422, 1999.
doi:10.1103/PhysRevB.60.11422

26. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion relations,'' Phys. Rev. Lett., Vol. 69, 2772, 1992. Bell, P. M., J. B. Pendry, L. M. Moreno, and A. J. Ward, A program for calculating photonic band structures and transmission coefficients of complex structures," Comp. Phys. Comm., Vol. 85, 1995.

27. Van Driel, H. M. and W. L. Vos, "Multiple Bragg wave coupling in photonic band-gap crystals," Phys. Rev. B, Vol. 62, 2000.
doi:10.1103/PhysRevB.62.9872

28. Romanov, S. G., T. Maka, C. M. Sotomayor Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, "Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals," Phys. Rev. E, Vol. 63, 056603, 2001.
doi:10.1103/PhysRevE.63.056603

29. Sözuer, H. S., J. W. Haus, and R. Inguva, "Photonic bands: Convergence problems with the plane-wave method," Phys. Rev. B, Vol. 45, 13962, 1992.
doi:10.1103/PhysRevB.45.13962

30. Busch, K. and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E, Vol. 58, 1998.
doi:10.1103/PhysRevE.58.3896

31. Wijnhoven, JEGJ and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science, Vol. 281, 1998.
doi:10.1126/science.281.5378.802

32. Blanco, A., E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Míguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature, Vol. 405, 2000.

33. Doosje, M., B. J. Hoerders, and J. Knoester, "Photonic bandgap optimization in inverted fcc photonic crystals," J. Opt. Soc. Am. B, Vol. 17, 2000.

34. Romanov, S. G., H. M. Yates, M. E. Pemble, and R. M. de la Rue, "Impact of GaP layer deposition upon photonic bandgap behaviour of opal," J. Phys.: Cond. Matter, Vol. 12, 2000.

35. Muller, M., R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, "Photonic crystal films with high refractive index contrast," Adv. Mat., Vol. 12, 2000.

36. Vlasov, Yu. A., N. Yao, and D. J. Norris, "Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots," Adv. Mat., Vol. 11, 1999.
doi:10.1002/(SICI)1521-4095(199902)11:2<165::AID-ADMA165>3.0.CO;2-3

37. Megens, M., JEGJ Wijnhoven, A. Lagendijk, and W. L. Vos, "Light sources inside photonic crystals," J. Opt. Soc. Am. B, Vol. 16, 1999.

38. Romanov, S. G., A. V. Fokin, and R. M. de la Rue, "Eu3+ emission in an anisotropic photonic bandgap environment," Appl. Phys. Lett., Vol. 76, 2000.
doi:10.1063/1.126126

39. Bogomolov, V. N., S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, "Photonic band gap phenomenon and optical properties of artificial opals," Phys. Rev. E, Vol. 55, 1997.
doi:10.1103/PhysRevE.55.7619

40. John, S., "Localization of light — theory of photonic band gap materials," Photonic Band Gap Materials, 563-665, 1995.

41. Yamasaki, T. and T. Tsutsui, "Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres," Appl. Phys. Lett., Vol. 72, 1998.
doi:10.1063/1.121234

42. Romanov, S. G., T. Maka, C. M. Sotomayor Torres, M. Muller, and R. Zentel, "Emission properties of dye-polymer-opal photnoic crystals," J. Lightwave Technol., Vol. 17, 1999.
doi:10.1109/50.803002

43. Suzuki, T. and P. K. L. Yu, "Emission power of an electric dipole in the photonic band structure of the fcc lattice," J. Opt. Soc. Am. B, Vol. 12, 1995.

44. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B, Vol. 58, 1998.
doi:10.1103/PhysRevB.58.6339

45. Purcell, E. M., "Spontaneous emission probabilities at radio frequencies," Phys. Rev., Vol. 69, 1946.
doi:10.1103/PhysRev.69.37

46. Moroz, A., "Three-dimensional complete photonic-band-gap structures in the visible," Phys. Rev. Lett., Vol. 83, 1999.
doi:10.1103/PhysRevLett.83.5274

47. Zhou, J., Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, "Three-dimensional photonic band gap structure of a polymer-metal composite," Appl. Phys. Lett., Vol. 76, 2000.

48. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency- domain methods for Maxwell's equations in a planewave basis," Optics Express, Vol. 8, 2001.