Vol. 33
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Multilayered Media Green's Functions for Mpie with General Electric and Magnetic Sources by the Hertz Potential Approach
By
, Vol. 33, 141-165, 2001
Abstract
A complete set of three dimensional multilayered media Green's functions is presentedfor general electric andmagnetic sources. The Green's functions are derived in the mixed potential form, which is identical with the Michalski-Zheng C-formulation. The approach appliedin this paper is basedon the classical Hertz potential representation. A special emphasis is on the formulation of the dyadic Green's functions GHJ and GEM. In these functions the derivatives due to the curl operator are taken in the spectral domain. This avoids the needof the numerical differentiation. Furthermore, it is foundthat the Hertzian potentials satisfy several useful duality and reciprocity relations. By these relations the computational efficiency of the Hertz potential approach can be significantly improvedandthe number of requiredSommerfeldin tegrals can be essentially reduced. We show that all spectral domain Green's functions can be obtained from only two spectral domain Hertzian potentials, which correspond to the TE component of a vertical magnetic dipole and the TM component of a vertical electric dipole. The derived formulas are verified by numerical examples.
Citation
Pasi Yla-Oijala, Matti Taskinen, and Jukka Sarvas, "Multilayered Media Green's Functions for Mpie with General Electric and Magnetic Sources by the Hertz Potential Approach," , Vol. 33, 141-165, 2001.
doi:10.2528/PIER00120802
References

1. Mosig, J. R., "Arbitrarily shapedmicrostrip structures and their analysis with a mixedp otential integral equation," IEEE Trans. Microwave Theory Tech., Vol. 36, 314-323, 1988.
doi:10.1109/22.3520

2. Zheng, D. and K. A. Michalski, "Analysis of coaxially fed microstrip antennas of arbitrary shape with thick substrates," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 12, 1303-1327, 1991.
doi:10.1163/156939391X00860

3. Tsai, M-J., F. De Flaviis, O. Fordham, and N. G. Alexpoulos, "Modelling planar arbitrarily shaped microstrip elements in multilayered media," IEEE Trans. Microwave Theory Tech., Vol. 45, 330-337, 1997.
doi:10.1109/22.563330

4. Bunger, R. and F. Arngt, "Efficient MPIE approach for the analysis of three-dimensional microstrip structures in layered media," IEEE Trans. Microwave Theory Tech., Vol. 45, 1141-1153, 1997.
doi:10.1109/22.618401

5. Ling, F., D. Jiao, and andJ. M. Jin, "Efficient electromagnetic modeling of microstrip structures in multilayer media," IEEE Trans. Microwave Theory Tech., Vol. 47, 1810-1818, 1999.
doi:10.1109/22.788516

6. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part II: Implementation andresults for contiguous half-spaces," IEEE Trans. Antennas Propagat., Vol. 38, 345-352, 1990.
doi:10.1109/8.52241

7. Vitebskiy, S., K. Sturgess, and L. Carin, "Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution," IEEE Trans. Antennas Propag., Vol. 44, 143-151, February 1996.
doi:10.1109/8.481640

8. Cui, T. J., W. Wiesbeck, and andA. Herschlein, "Electromagnetic scattering by multiple three-dimensional scatterers buried under multilayeredmed ia --- Part I: Theory, Part II: Numerical implementation andresults," IEEE Trans. Geoscience Remote Sensing, Vol. 36, 526-546, March 1998.

9. Cui, T. J. and W. C. Chew, "Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three-dimensional buriedob jects," IEEE Trans. Geoscience Remote Sensing, Vol. 37, 887-900, March 1999.

10. Geng, N. and L. Carin, "Wide-bandelectromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium," IEEE Trans. Antennas Propagat., Vol. 47, 610-619, April 1999.
doi:10.1109/8.768799

11. Mosig, J. R., "Integral equation technique," Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, 133-213, 1989.

12. Chew, W. C., "Waves and Fields in Inhomogeneous Media," IEEE Press, 1990.

13. Michalski, K. A. and J. R. Mosig, "Multilayeredmed ia Green’s functions in integral equation formulations," IEEE Trans. Antennas Propagat., Vol. 45, 508-519, 1997.
doi:10.1109/8.558666

14. Bernardi, P. and R. Cicchetti, "Dyadic Green’s functions for conductor-bakedla yeredstructures excitedb y arbitrary tridimensional sources," IEEE Trans. Microwave Theory Tech., Vol. 42, 1474-1483, Aug. 1994.
doi:10.1109/22.297809

15. Chow, Y. L., N. Hojjat, S. Safavi-Naeini, and andR. Faraji-Dana, "Spectral Green’s functions for multilayer media in a convenient computational form," IEE Proc.-Mircow. Antennas Propag., Vol. 145, 85-91, 1998.
doi:10.1049/ip-map:19981598

16. Sommerfeld, A., "Partial Differential Equations," Academic, 1949.

17. Stoyer, C. H., "Electromagnetic fields of dipoles in stratified media," IEEE Trans. Antennas Propagat., Vol. 25, 547-552, 1977.
doi:10.1109/TAP.1977.1141618

18. Kong, J. A., "Electromagnetic fields due to dipole antennas over stratifiedanisotropic media," Geophysics, Vol. 37, 985-996, 1972.
doi:10.1190/1.1440321

19. Tang, C.-M., "Electromagnetic fields due to dipole antennas embedded in stratified anisotropic media," IEEE Trans. Antennas Propagat., Vol. 27, 665-670, 1979.
doi:10.1109/TAP.1979.1142160

20. Kong, J. A., "Electromagnetic Wave Theory," John Wiley & Sons, 1986.

21. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory," IEEE Trans. Antennas Propagat., Vol. 38, 335-344, 1990.
doi:10.1109/8.52240

22. Harrington, R. F., "Boundary integral formulations for homogeneous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.
doi:10.1163/156939389X00016

23. Michalski, K. A., The mixed-potential electric field integral equation for objects in layeredmed ia, Vol. 39, 317-322, Arch. Elek. Ubertragung., 1985.

24. Michalski, K. A., "On the scalar potential of a point charge associatedwith a time-harmonic dipole in a layeredmed ium," IEEE Trans. Antennas Propagat., Vol. 35, 1299-1301, 1987.
doi:10.1109/TAP.1987.1144022

25. Dural, G. and M. I. Aksun, "Closed-form Green’s functions for general sources andstratifiedmed ia," IEEE Trans. Microwave Theory Tech., Vol. 43, 1545-1552, 1995.
doi:10.1109/22.392913

26. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1970.

27. Sarvas, J., M. Taskinen, and andS. Jarvenpaa, "Computing the scattering matrix of a multiport andm ultilayer microstrip patch with the mixedp otential integral equation method," Proceedings of PIERS 1996, Vol. 464, 1996.

28. Hua, Y. and T. K. Sarkar, "On SVD for estimating generalized eigenvalues of singular matrix pencil in noise," IEEE Trans. Signal Processing., Vol. 39, 892-900, 1991.
doi:10.1109/78.80911

29. Sarkar, T. K. and O. Pereira, "Using the matrix pencil methodto estimate the parameters of a sum of complex exponentials," IEEE Antennas Propag. Magazine., Vol. 37, 49-55, 1995.

30. Ling, F., "Fast electromagnetic modeling of multilayer microstrip antennas andcircuits," h.D. thesis, University of Illinois, 2000.