Vol. 31
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Effective Permittivity of Wet Snow Using Strong Fluctuation Theory
By
, Vol. 31, 273-290, 2001
Abstract
The strong fluctuation theory is applied to calculate the effective permittivity of wet snow by a two-phase model with nonsymmetrical inclusions. In the two-phase model, wet snow is assumed to consist of dry snow (host) and liquid water (inclusions). Numerical results for the effective permittivity of wet snow are illustrated for random media with isotropic and anisotropic correlation functions. A three-phase strong fluctuation theory model with symmetrical inclusions is also presented for theoretical comparison. In the three-phase model, wet snow is assumed to consist of air (host), ice (inclusions) and water (inclusions) and the shape of the inclusions is spherical. The results are compared with the Debye-like semi-empirical model and a comparison with experimental data at 6, 18 and 37 GHz is also presented. The results indicate that (a) the shape and the size of inclusions are important, and (b) the two-phase model with non-symmetrical inclusions provides the good results to the effective permittivity of wet snow.
Citation
Ali Arslan, H. Wang, Jouni Pulliainen, and M. Hallikainen, "Effective Permittivity of Wet Snow Using Strong Fluctuation Theory," , Vol. 31, 273-290, 2001.
doi:10.2528/PIER00071709
References

1. Cumming, W., "The dielectric properties of ice and snow at 3.2 centimeters," J. Appl. Phys., Vol. 23, 768-773, 1952.
doi:10.1063/1.1702299

2. Glen, J. W. and P. G. Paren, "The electrical properties of snow and ice," J. Glaciol., Vol. 15, 15-38, 1975.
doi:10.1017/S0022143000034249

3. Colbeck, S. C., "Liquid distribution and the dielectric constant of wet snow," NASA Workshop on Microwave Remote Sensing of Snowpack Properties, NASA CP2153, Ft. Collins, CO, May 20–22, 1980.

4. Ambach, W. and A. Denoth, "The dielectric behavior of snow: A study versus liquid water content," NASA Workshop on Microwave Remote Sensing of Snowpack Properties, NASA CP2153, Ft. Collins, CO, May 20–22, 1980.

5. Hallikainen, M., F. Ulaby, and M. Abdelrazik, "Dielectric properties of snow in 3 to 37 GHz range," IEEE Trans. on Antennas and Propagation, Vol. 34, No. 11, 1329-1340, 1986.
doi:10.1109/TAP.1986.1143757

6. Jin, Y. Q. and J. A. Kong, "Strong fluctuation theory for electromagnetic wave scattering by a layer of random discrete scatters," J. Applied Physics, Vol. 55, 1364-1369, 1984.
doi:10.1063/1.333226

7. Jin, Y. Q., "The radiative transfer equation for strongly-fluctuation continuous random media," J. Quant. Spectrosc. Radiat. Transfer., Vol. 42, 529-537, 1989.
doi:10.1016/0022-4073(89)90043-5

8. Tsang, L. and J. A. Kong, "Scattering of electromagnetic waves for random media with strong permittivity fluctuations," Radio Sci., Vol. 16, 303-320, 1981.
doi:10.1029/RS016i003p00303

9. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Remote Sensing, Wiley Series in Remote Sensing, J. A. Kong (ed.), 162–168, New York, 1985.

10. Nghiem, S. V., R. Kwok, J. A. Kong, and R. T. Shin, "A model with ellipsoidal scatterers for polarimetric remote sensing of anisotropic layered media," Radio Sci., Vol. 28, 687-703, 1993.
doi:10.1029/93RS01605

11. Nghiem, S. V., R. Kwok, S. H. Yueh, J. A. Kong, C. C. Hsu, M. A. Tassoudji, and R. T. Shin, "Polarimetric scattering from layered media with multiple species of scatterers," Radio Sci., Vol. 30, 835-852, 1995.
doi:10.1029/95RS01247

12. Nghiem, S. V., R. Kwok, J. A. Kong, R. T. Shin, S. A. Arcone, and A. J. Gow, "An electrothermodynamic model with distributed properties for effective permittivity of sea ice," Radio Sci., Vol. 31, 297-311, 1996.
doi:10.1029/95RS03429

13. Wigneron, J.-P., Y. H. Kerr, A. Chanzy, and Y. Q. Jin, "Inversion of surface parameter from passive microwave measurement over a soybean field," Remote Sens. Environ., Vol. 46, 61-72, 1993.
doi:10.1016/0034-4257(93)90032-S