Vol. 31
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Bistatic Scattering and Backscattering of Electromagnetic Waves by Conducting and Coated Dielectric Spheroids: a New Analysis Using Mathematica Package
By
, Vol. 31, 225-245, 2001
Abstract
Solutions to electromagnetic scattering at any angle of incidence by a perfectly conducting spheroid and a homogeneous dielectric spheroid coated with a dielectric layer are obtained by solving Maxwell's equations together with boundary conditions. The method used is that of expanding electric and magnetic fields in the spheroidal coordinates in terms of the spheroidal vector wave functions and matching their respective boundary conditions at spheroidal interfaces. In this formulation, the column vector of the series expansion coefficients of the scattered field is obtained from that of the incident field by means of a matrix transformation, which is in turn obtained from a system of equations derived from boundary conditions. The matrix depends only on the scatterer's properties; hence the scattered field at a different direction of incidence is obtained without repeatedly solving a new set of simultaneous equations. Different from the previous work, the present work developed an accurate and efficient Mathematica source code for more accurate solution to the problem. Normalized bistatic and backscattering cross sections are obtained for conducting (for verification purpose), homogeneous dielectric (for verification purpose), and coated dielectric prolate (for some new results) spheroids, with real and complex permittivities. Numerically exact results for the coated dielectric prolate spheroids are newly obtained and are not found in existing literature.
Citation
L.-W. Li, T. S. Yeo, and M.-S. Leong, "Bistatic Scattering and Backscattering of Electromagnetic Waves by Conducting and Coated Dielectric Spheroids: a New Analysis Using Mathematica Package," , Vol. 31, 225-245, 2001.
doi:10.2528/PIER00071706
References

1. Stratton, J. A., Electromagnetic Theory, McGraw-Will, New York, 1941.

2. Van de Hulst, H. C., Light Scattering by Small Particles, John Wiley & Sons, New York, 1957.
doi:10.1063/1.3060205

3. Rheinstein, J., "Scattering of electromagnetic waves from dielectric coated conducting spheres," IEEE Trans. Antennas Propagat., Vol. 12, No. 3, 334-340, March 1964.
doi:10.1109/TAP.1964.1138223

4. Adey, A. W., "Scattering of electromagnetic waves by long cylinder," Electron. Radio Eng., Vol. 35, 149-158, 1958.

5. Uslenghi, P. L. E., "High frequency scattering from a coated cylinder," Canadian Journal of Physics, Vol. 42, 2121-2128, 1964.
doi:10.1139/p64-195

6. Siegel, K. M., F. V. Schultz, B. H. Gere, and F. B. Sleator, "The theory and numerical determination of the radar cross section of a prolate spheroid," IRE Trans. Antennas Propagat., Vol. 4, 266-275, 1956.
doi:10.1109/TAP.1956.1144425

7. Sinha, B. P. and R. H. MacPhie, "Electromagnetic scattering from prolate spheroids for axial incidence," IEEE Trans. Antennas Propagat., Vol. 23, No. 5, 676-679, May 1975.
doi:10.1109/TAP.1975.1141161

8. Sinha, B. P. and R. H. MacPhie, "Electromagnetic scattering by prolate spheroids for plane waves with arbitrary polarization and angle of incidence," Radio Sci., Vol. 12, 171-184, 1977.
doi:10.1029/RS012i002p00171

9. Flammer, C., Spheroidal Wave Functions, Stanford Univ. Press, California, 1957.

10. Asano, S. and G. Yamamoto, "Light scattering by a spheroidal particle," Appl. Opt., Vol. 14, 29-49, 1975.
doi:10.1364/AO.14.000029

11. Cooray, M. F. R. and I. R. Ciric, "Scattering of electromagnetic waves by a coated dielectric spheroid," J. Electromagn. Waves Applic., Vol. 6, 1491-1507, 1992.
doi:10.1163/156939392X00021

12. Perterson, B. and S. Strom, "T-matrix formulation of electromagnetic scattering from multilayered scatterers," Phys. Review D, Vol. 10(8), 2670-2684, Oct. 1974.

13. Wang, D. S. and P. W. Barber, "Scattering by inhomogeneous nonspherical objects," Appl. Opts., Vol. 18(8), 1190-1197, April 1979.

14. Li, L.-W., M.-S. Leong, T.-S. Yeo, P.-S. Kooi, and K. Y. Tan, "Computations of spheroidal harmonics with complex argument: A review with an algorithm," Physical Review E, Vol. 58, No. 5, 6792-6806, November 1998.
doi:10.1103/PhysRevE.58.6792

15. Stratton, J. A., P. M. Morse, L. J. Chu, J. D. C. Little, and F. J. Corbato, Spheroidal Wave Functions, John Wiley & Sons, New York, 1956.

16. Sinha, B. P. and A. R. Sebak, "Scattering by a conducting spheroidal object with dielectric coating at axial incidence," IEEE Trans. Antennas Propagat., Vol. 40, No. 3, 268-274, 1992.
doi:10.1109/8.135468

17. Sebak, A. and L. Shafai, "Electromagnetic scattering by spheroidal objects with impedance boundary conditions at axial incidence," Radio Sci., Vol. 23, No. 6, 1048-1060, 1988.
doi:10.1029/RS023i006p01048

18. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York, 1983.

19. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, Oxford, 1970.